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The effect of mappings on the approximation, by Chebyshev colloca- 
tion, of functions which exhibit localized regions of rapid variation is 
studied. A general strategy is introduced whereby mappings are 
adaptively constructed which map specified classes of rapidly varying 
functions into low order polynomials. A particular family of mappings 
constructed in this way is tested on a variety of rapidly varying func- 
tions similar to those occurring in applications. It is shown that the 
mapped function can be approximated much more accurately by 
Chebyshev polynomial approximations than the original function. The 
effect on the approximation of introducing subdomains is also studied. 
The accuracy of the pseudo-spectral approximation is very sensitive to 
the location of the interface, although this sensitivity is reduced when 
mappings are employed within the subdomains. 0 1992 Academrc 

Press. Inc 

INTRODUCTION 

One of the major difficulties in the application of 
Chebyshev pseudo-spectral methods, or other spectral 
methods, to the solution of partial differential equations is 
in the approximation of functions which exhibit localized 
regions of rapid variation. The approximation of such func- 
tions by polynomial expansions generally results in global 
oscillations unless a large number of terms are used in the 
polynomial approximation. These oscillations often lead to 
instabilities and inaccuracies when spectral methods are 
applied to the solution of partial differential equations 
L-9, 111. One possible remedy is to introduce a mapping to 
a new coordinate system so that the mapped function can 

* This research was partially supported by the National Aeronautics and 
Space Administration while the authors were in residence at ICOMP, 
NASA Lewis Research Center, Cleveland, Ohio. Partial support for A.B. 
was also provided by NSF Grants ASC 87-19573 and MSS 91-02981. 

be accurately approximated by low order polynomial 
expansions. 

There is a great deal of computational evidence that 
appropriately chosen mappings can significantly enhance 
the accuracy of pseudo-spectral applications. In [ 181 
mappings were shown to enhance the accuracy of approxi- 
mations to shock like (hyperbolic tangent) functions. In 
[ 1, 3-5, 131 mappings were introduced dynamically via 
an adaptive procedure in which some error measure of 
the solution was minimized. Mappings have also been used 
to approximate boundary layer flows in Navier-Stokes 
calculations, for example [9]. 

There are two issues that must be addressed in the 
systematic application of mappings to enhance the accuracy 
of Chebyshev pseudo-spectral methods. These are 

l the construction of an appropriate family of mappings; 
l criteria to choose a particular mapping from this 

family according to the behavior of the solution to be 
approximated. 

The second issue has been addressed by employing adaptive 
procedures in order to determine appropriate mappings 
[ 1, 3, 5, 131. In these procedures, a family of mappings is 
introduced depending on a small number of free parameters. 
In addition, functionals are derived which are used to 
monitor the pseudo-spectral error. The appropriate 
mapping function is then chosen so that when the problem 
is transformed by the mapping the functional is minimized. 

The choice of an appropriate functional to monitor the 
pseudo-spectral error is an important component of the 
adaptive procedure. In [S, 131 a Sobolev-type norm of 
the solution was chosen as the functional monitoring the 
pseudo-spectral error. In [ 31 another functional, derived 
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directly from the Chebyshev expansion of an arbitrary 
function, was used in an adaptive procedure and shown to 
be more effective than the Sobolev norm in measuring the 
errors of the pseudo-spectral approximation. 

Another equally important component of the adaptive 
procedure is the choice of the family of mappings to be 
utilized as coordinate transformations. Usually, the family 
of coordinate transformations to be incorporated in the 
solution method is prescribed in advance and justified by at 
most heuristic reasoning. There have been very few detailed 
studies of the effects of different families of mappings on the 
accuracy of pseudo-spectral approximations of various dif- 
ferent types of functions. In [ 151 a family of mappings was 
derived which had the effect of giving a more uniform dis- 
tribution to the collocation points, i.e., in an appropriate 
(but singular) limit the mapped Chebyshev collocation 
points were uniformly distributed. Numerical examples 
demonstrated that this mapping function gave enhanced 
accuracy compared to the unmapped Chebyshev pseudo- 
spectral method for functions which did not have rapid 
variations. However, the effect of the mapping on functions 
exhibiting rapid variation was not considered. A similar 
type of mapping was presented in [ 11. In [3] a family of 
mappings was introduced which attempted to map certain 
interior regions to the boundaries. 

In this paper we derive a family of mappings which are 
well suited to the approximation of functions with localized 
regions of rapid variations. The family of mappings depend 
on two parameters which are related to the size of the 
gradient over the narrow interval and the location of the 
region of rapid variation, respectively. The effect of this 
mapping on the accuracy of a Chebyshev approximation is 
analyzed for a variety of different functions and compared 
to the families of mappings in [3, 151 and to the case when 
no mapping is employed. 

The use of mappings in the solution of partial differential 
equations has proven to be a very effective method in 
applying pseudo-spectral methods to problems with rapidly 
varying solutions. In this case the exact solution is not 
known and the functional which is to be minimized’ is 
evaluated using the last available solution. When the 
differential equation is transformed by a mapping, the 
coefficients of the differential operator change. The 
emphasis in this paper will be on the use of mappings to 
enhance the accuracy of the approximation of rapidly 
varying functions by Chebyshev pseudo-spectral methods. 
The effect of changes in the differential operator is not 
considered. 

There is considerable computational evidence (see e.g. [ 1, 
3, 4, 6, 131) that the changes in the differential operator do 
not negatively effect the conditioning of the matrices 
obtained from the pseudo-spectral approximation. On the 
contrary, for some of the functions considered below, the 
use of mappings permits a reduction of almost an order of 

magnitude in the number of collocation points required for 
a given level of accuracy. The use of such a large number of’ 
collocation points would be prohibitively expensive and 
could lead to ill-conditioned matrices in forming the 
Chebyshev approximations. Similarly the computational 
results cited above do not indicate any severe reduction in 
the timestep by the use of mappings, and indeed the results 
of [ 151 indicate that for a fixed number of collocation 
points, the use of mappings can lead to larger timesteps than 
those that would be required if no mapping is employed. 
A comparison of the timesteps required for Chebyshev 
approximations must also account for the number of 
collocation points required for accurate approximations. 
The large number of collocation points required to 
accurately approximate rapidly varying functions without 
mappings will necessitate significantly smaller timesteps 
than those needed when mappings are employed with a 
consequently smaller number of collocation points. 
Furthermore, it is shown in [4] that standard iterative 
methods, for example, finite difference preconditioners, 
converge rapidly when adaptively chosen mappings are 
employed. 

PSEUDO-SPECTRAL APPROXIMATION 
AND MAPPINGS 

We first describe the derivation of the Chebyshev pseudo- 
spectral approximation. This discussion is brief, a more 
detailed description may be found in [9, 111. Let f(x) be a 
defined in the interval Z, -1 <x < 1. The Gauss-Lobatto 
points are defined as 

X,=COS -$ , O<j<N. 
0 

P,, the polynomial of n th degree which interpolatesfat the 
points x,, is the Chebyshev interpolant, or pseudo-spectral, 
approximation to f and can be obtained by using the 
Gauss-Lobatto quadrature rule to evaluate the expansion 
coefficients. It is known that the maximum norm error in 
approximating f by the pseudo-spectral approximation 
differs by at most a factor O(log N) from the maximum 
norm error in approximating f by the minimax polynomial 
[16]. A similar result is true for the Galerkin polynomial 
approximation tof: We anticipate that the results presented 
here are equally valid for Galerkin approximations. 

In general a polynomial expansion is not appropriate to 
approximate functions with large gradients, e.g., functions 
exhibiting spikes, localized oscillations, or near discon- 
tinuities. Furthermore, the accuracy of Chebyshev 
approximations tends to be sensitive to the location of 
regions with large gradients. There is computational 
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evidence that Chebyshev approximations are more accurate 
for functions which vary rapidly near the boundaries as 
opposed to functions which vary rapidly away from the 
boundaries, for example [18]. It was shown in [lS] that 
this is true both for Chebyshev methods, where the 
collocation points cluster near the boundaries, and also for 
collocation based on evenly spaced points. It appears from 
the results in [18] that this is a property of polynomial 
approximations and is not necessarily related to the 
clustering of the collocation points. 

We denote the family of mappings by, 

--c = qb, co, (2) 

where x represents the physical coordinate, - 1 d s < 1 is 
the transformed coordinate, and c1 denotes one or possibly 
more free -parameters. The Chebyshev interpolant can then 
be used to approximate the transformed functionf(q(s, a)). 
The effect of the mapping can be regarded as transforming 
the function to be approximated tof(q(s, a)) fromf(x). If 
the mapping is properly chosen f(q(s, ~1)) will vary more 
gradually and so be more readily approximated by a 
polynomial. A different viewpoint is that in the original 
coordinate, x, we are changing the basis functions from 
polynomials to a new set of basis functions that can better 
represent functions that strongly vary in localized regions. 

The mappings can improve the accuracy of the pseudo- 
spectral approximation in three general ways which can be 
employed as strategies in designing families of mappings. 
The transformed function can be less rapidly varying in the 
new coordinate system so it is better approximated by a 
polynomial. Second, the region of rapid variation can be 
mapped to the boundaries. Third, the mapping can expand 
the region near the boundaries thus tending to provide a 
more uniform distribution of collocation points. This latter 
approach was proposed in [ 151. The distinction between 
these three potential strategies is not sharp, for example, a 
mapping in which a spike at x = 0 is transformed to a less 
rapidly varying function must of necessity map regions in 
the interior closer to the boundaries. However, in this paper 
we compare three families of mappings which were con- 
structed based on these three potential strategies for several 
functions similar to those which occur in applications. Our 
results demonstrate that in most instances mappings based 
on transforming the function into one which varies more 
gradually tends to yield more accurate approximations. 

When the Chebyshev pseudo-spectral method is used to 
solve partial differential equations there are many sources of 
errors and it is difficult to differentiate the source of the 
errors. In this paper we concentrate on the interpolation 
problem and evaluate the effectiveness of different mappings 
in reducing the maximum norm error in the pseudo-spectral 
approximation. In such a program one could simply start 
with a function and find the mapping parameters which 

yield the smallest error in some norm. However, in applica- 
tions the exact solution is not known and some adaptive 
procedure is necessary in order to select appropriate 
mapping parameters. In this paper we determine mapping 
parameters by minimizing a functional related to the 
spectral interpolation error. This functional, derived in [ 31, 
is 

Z*(g) = s’, (~2d’/w ds 
i ) 

I:2 

’ 

where 

w(s) = JTT, 6” = w(s) $ 

If the interval Z, - 1 d x < 1 is mapped to the interval 0 6 
8 < 71 by the mapping x = cos(B), then (3) is transformed to 
the integral of the square of the second derivative of the 
transformed function. This was demonstrated in [ 121 where 
it was also shown that (3) provides an upper bound on the 
weighted L2 norm of the projection error (i.e., the error 
obtained from approximating u by its Chebyshev Galerkin 
approximation). Furthermore, this functional gives an 
upper bound on the maximum norm of the error [3]. 

Our approach is to compute (3) using the transformed 
function f(q(s, tl)). We do this by forming the Chebyshev 
interpolant to f(q(s, a)) using a fixed value of N and then, 
using the Gauss-Lobatto quadrature formula, evaluating 
(3). The result will be a function only of the parameter vec- 
tor c1 which we denote by Z,(a). We choose ~1 so as to mini- 
mize Z2. In practice this minimum is found by computing 
Zz(a) over a range of values of tx and then choosing that 
parameter for which a minimum occurs. In most cases we 
take the global minimum over the range of values of cc In 
certain circumstances global minima occur for parameters 
which give a highly inaccurate approximation. This is due to 
inaccuracies in computing the quadrature in (3) when the 
transformed function f(q(s, a)) is poorly approximated for 
some parameters a. In this case we take local minima for 
which the Chebyshev interpolant is a good approximation 
to the given functionf. 

This approach is a practical and effective method to 
determine mappings which enhance the accuracy of the 
pseudo-spectral approximation [3]. It has been success- 
fully utilized in the computation of problems in combustion 
[3,5, 131 and has also been used for problems in wave 
propagation in [ 11. Furthermore in all cases presented 
below the errors that were obtained from mappings for 
which Z,(a) was minimized were very close to the minimum 
errors in the maximum norm over the range of parameters 
investigated. 
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3. FAMILIES OF MAPPINGS 

We first introduce a family of mappings which have the 
property of transforming functions of a certain class to poly- 
nomials. Although the functions occurring in applications 
are not exactly of the specified class, they would be expected 
to be sufficiently similar so that the Chebyshev approxima- 
tion requires only low degree polynomials to give good 
accuracy. 

We begin with a specified class of functions of the form 
s = h(x, u,, c12). We suppose for certain parameter values 
this function exhibits rapid variations. For example, sup- 
pose that for large values of r, , this function exhibits shock- 
like behavior with the rapid variations occurring near the 
point x = a2 and nearly constant behavior away from this 
point. If the function h(x, c(, , x2) is univalent then upon an 
appropriate resealing this function can be assumed to map 
the interval - 1 6 x < 1 univalently onto itself. The inverse 
function x = h ~ ‘(s, a,, Q) then describes a family of map- 
pings such that under this mapping the function h becomes 
linear and can therefore be approximated by a low order 
expansion of Chebyshev polynomials. In applications the 
rapidly varying solutions will not be exactly of the form of 
the given function h(x, sl, , cr,), however, the image of these 
functions under the mapping given by h ’ is likely to have 
a gradual variation and so can be approximated by a low 
order polynomial expansion provided the parameters x, 
and a, are properly chosen. This will be justified by the 
examples presented below. 

The mapping x=h-‘(s, x1, CQ) can be expected to 
enhance the approximation not only for rapidly varying 
functions similar to h(x, LX~, a*) but also for rapidly varying 
functions which behave like derivatives of h(x, cc,, CQ). In 
order to see why this is so, let g = h’(x, c(, , c(*) where ‘denotes 
derivative with respect to x. If h(x, a,, az) behaves as a step 
function then g(x, a,, Q) will behave as a spike centered at 
X=CQ. Suppose that this point is located away from the 
boundaries. Using the chain rule we obtain an expression 
for g(x, a,, CI~) under the mappings s = h(x, z, , rZ), 

gW’0, ~I,Q), ~1, a,)= (dh-‘(3, a,, r,)/ds) I. (4) 

If the function h(x, ~1,) CI~) behaves as a step function 
changing rapidly near the interior point x = CQ, then clearly 
dhW’(s, ~1,) CQ)/& will change most rapidly near the 
boundaries in s. Therefore we expect the mapping to 
enhance the accuracy of the approximation for g. Similar 
arguments hold for the approximation of functions similar 
to higher derivatives of h(x, a 1, CQ). 

In this paper we consider the following function 
4x, ~1, ~2) 

(5) 

For large values of c(, this function is nearly discontinuou> 
with a region of rapid variation occurring near Y -= 2: The 
parameters s0 and 2 are determined so that (5) maps the 
interval I onto itself. The values of .so and & determined in 
this way are 

ti-1 
S() = - 3’ k--tan ‘(z~( I +r,))/tan ‘(x,(1 --Y.-)). 

K-t I 

E.=tan -‘(a,(1 -ar))/(l -so) 

With these choices of E. and s0 the inverse of 

x = ~1~ + tan( (,r - s,)l)/cc, , 

(51, 

16) 

describes a two-parameter family of mappings of I into itself 
which is suitable for the accurate resolution of functions 
with localized regions of rapid variation. Here ~1, is related 
to the degree of change of the function and c(* is related to 
the location of the region of rapid variation. In applications 
these parameters would be obtained either from prior 
knowledge of the solution or from minimizing a functional 
such as (3) which measures the error in the approximation. 
We note that (6) is explicitly invertible. 

For small CI, , s is approximately equal to x and (6) is 
approximately the identity map. The use of the mapping (6) 
should not therefore be expected to degrade the accuracy in 
approximating slowly varying functions which can be well 
approximated by a Chebyshev approximation without any 
mapping. 

We point out that the an alternative to the inverse 
tangent function is the hyperbolic tangent function with an 
appropriate scaling. Mappings constructed using the hyper- 
bolic tangent are related to stationary shock-like solutions 
of the Burgers equation [7]. 

An alternative family of mappings has been proposed in 
[ 151. This family of mappings is 

x = arcsin(a, s)/arcsin( c1, ) (71 

and 0 < tl, < 1. The effect of this mapping is to expand the 
boundary regions and compress the interior regions. As 
x, + 1 the image of the Gauss-Lobatto points become 
uniformly spaced, however, the mapping becomes singular. 
As CI, +O, (7) approaches the identity mapping. The 
analysis and examples presented in [ 151 demonstrate that 
the use of (7) with c(i near 1 can significantly improve the 
accuracy of pseudo-spectral approximations for a range of 
functions. This was attributed to fact that the collocation 
points become nearly uniformly spaced as txi + 1. The 
major effect of this mapping is to obtain a more uniform dis- 
tribution of the collocation points and as such the mapping 
depends on only one parameter (however, a two-parameter 
extension was proposed in [15]). A related mapping is 
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presented in [l] which permits a concentration of 
collocation points in the interior which exceeds that at the 
boundary, i.e., it goes beyond obtaining a uniform distribu- 
tion of the collocation points. 

A third family of mappings that we consider is 

with 

$=4/n tan’[cr, tan(n/4)(x’- l)] + 1 (8) 

x’= (a2-x)/(azx- 1). 

The use of this mapping is described in [3, 51. The effect of 
the mapping is to map an arbitrary point, a,, to the origin 
and then expand one of the boundaries at the expense of 
the other by varying a,. This mapping is presented in [S], 
where it was used with a2 = 0 to compute functions with 
rapid variations near the boundary and in [3] to compute 
functions with rapid variations in the interior. 

4. MAPPINGS AND ACCURACY 

In this section we compare the effectiveness of the families 
of mappings described by (6), (7), and (8) in enhancing the 
accuracy of pseudo-spectral approximations. Our approach 
is to construct the pseudo-spectral polynomial for the trans- 
formed function and then to measure the maximum norm of 
the error. The maximum norm of the error is computed by 
comparing the approximating polynomial and the given 
function over a large grid of points. We also compute the 
discrete L, (unweighted) norm of the error in the coordinate 
system selected. We note that the L, norm of the error 
depends on the coordinate system and may not adequately 
measure the relevant errors in applications. 

We first consider approximations to the function 

y = tanh(a(x -x0)). (9) 

1 .oo , a 

t 0.00 

-1.00 
: 

-1.00 0.00 1 .oo 

X 

TABLE I 

J = tanh(a(x - .x0)) 

Mapping Max error L, Error 

6 51.30 0.0 2.40 1.71e-14 l.lOe-14 
6 6.06 0.2 80.57 8.37e-05 2.1 Se-05 
7 0.99999 NA 132.54 1.51e-03 3.48e-04 
7 0.9 NA 181.24 6.72e-03 1.42e-03 
8 9.92 -0.887 189.12 7.92e-03 1.70e-03 

U NA NA 227.14 2.05e-02 4.02e-03 

with 0 = 40. In our computations we compute over a grid of 
values of CI~ and x2 and select those parameter values for 
which the functional I, is minimized. For the case of (6) the 
global minimum always occurs when rx2 = x0, however, we 
indicate the sensitivity of the approximation to the value of 
CI~. The approximating polynomial is computed using 
N = 121. The error is computed using the Gauss-Lobatto 
points with N = 351. Both the maximum norm and the dis- 
crete L2 norm of the error are computed. The results are 
presented in Table I. An entry of U in the first column 
denotes that no mapping was used. 

The data in this table illustrates the effectiveness of the 
mapping (6) in enhancing the approximation of the shock- 
like profile (9). A graphical illustration of this is shown in 
Figs. la and lb. In Fig. la we plot (9) against the original 
independent variable x. In Fig. lb we plot the transformed 
function against the variable s using a1 = 51.30 and CI~ = 0. 
The figures clearly illustrate the more gradual variation of 
the transformed function. 

We note that the mapping (7) allows for a more accurate 
approximation than if no mapping at all is employed and 
also permits a considerably more accurate approximation 
than the use of (8). The best accuracy (and the minimum 
value of (3)) occurs as c1i -+ 1 so that the collocation points 
are uniformly spaced but the mapping is singular. Values of 

1.00 

> 0.00 

! t 

FIG. 1. (a) Function (9) plotted against the independent variable x and (b) plotted against the transformed variable S. 
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CI~ close to 1 do not affect our approximation program, 
however when mappings are applied to the solution of par- 
tial differential equations, Jacobians are introduced into the 
equations. The singularity in the mapping (7) which occurs 
at a, = 1 may therefore effect the solution of partial differen- 
tial equations when CI, is sufficiently close to 1. In the solu- 
tion of partial differential equations the degree of “near 
singularity” that can be allowed in the mapping without 
affecting the numerical approximation will be problem 
dependent, depending on other parameters of the solution 
process not evaluated here. There is a degradation in 
accuracy as CI~ is reduced from the singular value 1. We have 
presented results for CI, = 0.9 in order to illustrate the 
behavior of the approximation as LY, is varied. 

Finally we note that (6) is robust in the sense that even if 
a2 is not at the point of maximum variation it still yields a 
significantly improved approximation. This is important for 
several reasons. 

l The minimization might be inexact. 
l There may be several regions of rapid variation 

clustered together. 
l Different dependent variables might exhibit rapid 

spatial variation at different points. 
l In many two-dimensional problems there is often a 

principal direction in which the spike (or rapid variation) 
occurs, however, the location of this variation may depend 
on some transverse coordinate. It may be more efficient to 
employ a one-dimensional mapping to resolve such a solu- 
tion rather than a two-dimensional mapping which depends 
on the transverse coordinate. 

The behavior described in the last point above is common 
in, for example, wave propagation if a pulse propagates 
through a dispersive medium, fluid dynamics if curved 
shocks form and combustion where cells can form along 
flame fronts. Thus we consider the robustness of the 
mapping (6) with respect to the location parameter a2 to be 
an important point. 

We next illustrate the convergence properties for the 
mapped function by considering the same results using 
N = 8 1. The results are presented in Table II. In this case we 
have used the same mapping parameters as were obtained 

TABLE II 

v=tanh(a(x--x,)), Using N=81 

Mapping a1 a2 I2 Max error L, Error 
___- 

6 51.30 0.0 2.40 2.20e-11 1.7Oe-11 
6 6.06 0.2 80.95 1.96e-03 6.68e-04 
I 0.99999 NA 119.22 1.6Oe-02 4.08e-03 
8 9.92 -0.887 137.60 5.1 le-02 1.12e-02 

U NA NA 130.77 8.68e-02 1.92e-02 

using 121 collocation points. The results show that there IS 
a much more rapid convergence when the mapping 16) is 
used. This is probably due to infinite order convergence of 
the spectral method which in practice means a very high 
order of convergence when the function varies gradually. 
We note that there are definite numerical errors in the 
approximation of the function I, when the mapping 16) IS 
not used. In practice this could lead to poor parameter 
values being produced by the minimization procedure. 

We have also attempted to compare the number of 
collocation points required for comparable accuracy 
between approximations which employ the mapping (6) 
and those for which no approximation is employed. Using 
51 collocation points the use of the mapping (6) with 
adaptively chosen parameters results in a maximum error of 
about 2.5 x 10 ‘. If no mapping is employed we find that 
450 collocation points are required to obtain a comparable 
error (4.8 x lo- ‘). Similar comparisons also hold for higher 
error levels. For example, if the mapping (6) is employed, 20 
collocation points are required in order to obtain an error 
of the order 6.8 x 10 5, while if no mapping is employed 270 
points are required for a comparable error (5.9 x 10 ’ ) 

The results described for (9) are not necessarily surprising 
as the family of mappings (6) is constructed so that the 
image of a near step function is linear. We next consider the 
function 

y = exp( - a’(x - xo)‘/2). (10) 

This function also exhibits a rapid variation near x = .x0, 
however, the behavior is that of an isolated spike rather 
than that of a near step as in (9). We consider the values 
0 = 50 and x,, = 0. The results are presented in Table III. 

We can infer from the results presented in Table III that 
the mapping (6) is effective in enhancing the resolution of 
spike-like functions. We also illustrate this graphically in 
Figs. 2a and 2b where we plot the function (10) in the 
original coordinate, x (Fig. 2a), and the transformed func- 
tion in the mapped coordinate, s (Fig. 2b). We note that the 

TABLE III 

y = exp( - C’(X - x0)l/2), x0 = 0 

Mapping I? 

6 37.48 0.0 18.26 
6 10.86 0.1 106.67 
6 5.744 0.2 245.51 
6 3.506 0.3 386.86 
7 0.99999 NA 401.10 
7 0.9 NA 557.02 
8 73.92 -0.983 547.04 

U NA NA 699.84 

Max error L, Error 

1.42e-09 
3.37e-06 
1.59e-03 
2.20e-02 
1.20e-02 
4.90e-02 
4.57e-02 
1.14e-01 

8.30e- IO 
1.48e-06 
5.5le-04 
6.08e-03 
6.06e-03 
1.96e-02 
1.85e-02 
3.95e-02 
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FIG. 2. (a) Function (10) plotted against the independent variable x and (b) plotted against the transformed variable s. 

mapped function still resembles a Gaussian, however, there 
is a more gradual variation. The use of mappings for the 
function (10) also leads to a significant reduction in the 
number of collocation points required in order to obtain a 
given level of accuracy. For example, if the mapping (6) is 
employed, 31 collocation points are required for a maxi- 
mum norm error of the order of 8.9 x lo-‘. If no mapping 
is employed, 200 collocation points are required for a 
comparable error (6.4 x 10P5). 

The results also illustrate that the use of the mapping (6) 
provides good accuracy as the parameter u2 is moved away 
from the location of the spike. The results suggest that the 
mapping (6) can allow high resolution of multiple spikes 
even when the parameter LY* deviates significantly from the 
location of each individual spike. Of course if the spikes are 
widely separated or if a2 is far from the center of the spike 
the effectiveness of (6) degrades. We have found that the 
accuracy obtained from using (6) does not strongly depend 
on the value of x0 provided CQ is chosen to be near x0. 
Similar results hold for functions exhibiting a step function 
type of behavior as in (9). We also note that the map- 
ping (7) provides considerably more accuracy than (8). 

The results in Table III indicate that the functional (3) 
has a rather sharp minimum when cl? is at the location of the 
spike. In our calculations we have found the value of a2 
obtained from minimizing (3) to be an excellent indicator of 
the location of the spike (or most rapid variation). This 
suggests that this procedure could be used as a shock 
locator for non-oscillatory spectral methods and filtering 
methods [8, lo], at least when only one shock is present or 
multiple shocks are closely spaced. 

The effect of the location of the spike does considerably 
effect the behavior obtained from using (7) and (8). We 
illustrate this in our next example where we consider a spike 
near the boundary by setting x,=0.9. The results are 
presented in Table IV. 

The mapping (6) still gives very good accuracy even when 
t12 is not close to x0. The best approximation using (7) now 
occurs when CI~ + 0 where the mapping approaches the 
identity. In Table IV we indicate the errors found for 
c(r = 0.0001 the limit of our search region, together with the 
errors for larger values of a r, which lead to approximately 
uniformly spaced points. For functions which have signifi- 
cant variations near the boundaries, having the collocation 
points more uniformly spaced leads to a degradation in 
accuracy. We find that the behavior of the mapping (7) 
depends very abruptly on the location of the spike. For 
values of x0 just below 0.8 we find an abrupt transition 
where the value of a1 yielding maximum accuracy switches 
from c(r near 1 to c(r near 0. In this narrow overlap region the 
results obtained from (7) are insensitive to CL~. 

The result using (8) were found to be insensitive to ~1~ for 
c(~ near 0, and are presented only for the mapping with 
~1~ = 0 as it is used in [5] for functions with rapid variation 
near the boundary. The results indicate that this mapping is 
effective in approximating boundary layer type solutions 
however it does not seem to offer any advantages over (6) 
and is not considered further. 

TABLE IV 

y = exp( - a2(x - x0)2/2), x0 = 0.9 

Mapping a, 

6 35.25 
6 1.89 
7 O.O@Ol 
7 0.9 
7 0.99999 
8 0.0896 
U NA 

a2 

0.9 15.05 
0.5 179.55 

NA 227.22 
NA 288.03 
NA 400.23 
0.0 54.97 

NA 227.22 

Max error 

3.29e-10 
1.29e-04 
l.Ole-03 
2.85e-03 
1.34e-02 
8.31e-10 
l.Ole-03 

Lz Error 

2.21e-10 
S.lOe-05 
4.25e-04 
1.48e-03 
5.81e-03 
4.03e-10 
4.25e-04 
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TABLE V 

Sum of Two Gaussians, x,, = 0.30, x, = -0. IS 

Mapping a, a2 12 Max error L., Error 

6 5.136 0.0700 386.20 2.lOe-03 1.30e-03 
7 0.99999 NA 567.2 1.56e-02 8.!7e-03 
7 0.90000 NA 787.1 7.81e-02 2.60e-02 
U NA NA 1031.0 1.70e-0 1 5.54e-02 

We next consider the function 

y=exp( -a2(~-~0))2/2)+exp( -a’(x-~,))~/2). (11) 

The objective will be to determine the behavior of the 
various mappings when there is more than one region of 
rapid variation. The separation of the two regions of rapid 
variation can be controlled by varying x0 and x, . We first 
consider the case x0 = 0.30, x, = -0.15, g = 50. The results 
are presented in Table V. 

It can be seen from the table that the family of mappings 
described by (6) yields a more accurate Chebyshev 
approximation even in the case of relatively separated spikes. 
We note that the minimum error with the mapping(7) again 
appears to occur when a, -+ 1 so that the collocation points 
are nearly uniformly spaced but the mapping is almost 
singular. We have also exhibited the degradation in 
accuracy obtained by reducing tli from 1 by specifying an 
upper limit on c(i of 0.9. Even with this degradation the 
results obtained using (7) are considerably better than for 
the case when no mapping is employed. 

We next consider more widely separated spikes by setting 
x0 = 0.5, x, = -0.25, 0 = 40. The results are presented in 
Table VI. This is a relatively severe case as neither of the 
spikes are located close to the boundary. We observe that 
for widely separated spikes located away from the bound- 
aries the use of (6) leads to larger errors than (7), provided 
values of tli near 1 are used. The results obtained from (7) 
are not strongly sensitive to x0. This is not surprising as the 
effect of the mapping is to make the collocation points more 
uniform (in x). 

TABLE VI 

Sum of Two Gaussians, x0 = 0.50, x, = -0.25 

Mapping cc, x2 12 Max error L, Error 

6 2.104 0.0780 625.6 4.59e-02 1.43e-02 
I 0.99999 NA 567.1 1.45e-02 7.96e-03 
7 0.9OCKKI NA 758.8 5.76e-02 2.35e-02 
U NA NA 1018.04 1.95e-01 4.&k-02 

TABLE VII 

Sum of Two Gaussians, .Y(, = 0.W .Y, = 0.7 
-----.~.- .-_-- ~- 

Mapping Xl Z? I, Max error 1.: F trrti~ 

6 3.172 0.361 375.3 3.86e-03 1.5?e-03 
7 0.99999 NA 566.6 1.43e-02 7.71~"03 
7 0.90000 NA 629.3 X.Ole-02 1.99e-02 
c' NA NA 742.91 I .44e-0 1 3.78~.07 

_ _-~- 

We finally consider the case where one of the spikes is 
located near the boundary. In this case we consider ?cg = 0.9, 
x, = 0.2, g = 50. The results are presented in Table VII. We 
note that the best approximation occurs when CY? is close to 
the location of the interior spike. 

In the case of multiple regions of rapid variation the 
optimum values of B, and ~1~ for the mapping (6) are not 
suggested by the locations of the regions of rapid variation. 
These parameters must be determined by a numerical 
minimization procedure. 

In summary, our results indicate that the strategy of 
transforming the given function to one that is more readily 
approximated by a polynomial, which leads to the derivation 
of the family of mappings (6) appears to be more effective 
than the strategy of mapping regions of rapid variation to 
the boundaries. In particular the use of (6) appears to be 
superior in all respects to (8). The parameter a2 in (6) is an 
excellent indicator of the location of maximum variation, 
but the mapping is very robust if CI~ is varied away from this 
location. 

When the rapid variation occurs away from the boundary 
the use of (7) with CI, near 1, so that the collocation points 
are nearly uniformly spaced, is preferable to the unmapped 
Chebyshev method. In these cases the mapping (7) is most 
accurate as a i -+ 1 and degrades when ~1, is reduced from the 
singular value. It is therefore preferable to use this mapping 
as close to the singular point as possible. When there is a 
single region of rapid variation near the boundaries the 
unmapped Chebyshev approximation is more accurate than 
the use of (7). 

The use of (6) is superior to (7) for functions with rapid 
variation except when there are multiple regions of rapid 
variations that are widely separated and not located near 
the boundaries. In this case the best strategy seems to be to 
use (7) to obtain nearly equally spaced collocation points. 
Although this analysis is presented for pulse like functions 
similar effects hold for other types of functions with regions 
of rapid variation, for example functions which exhibit a 
step function type of behavior or localized highly oscillatory 
behavior. 

In this paper we have concentrated on the role of 
mappings in enhancing the accuracy of Chebyshev pseudo- 
spectral approximations. The transformation (7) was 
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TABLE VIII 

4’ =0.05/(x2 + 0.05) 

Mapping Xl “2 12 Max errcv L, Error 

6 6.54 0.0 2.68 l.l4e-12 9.69e- 13 
I 0.99624 NA 1.99 3.66e-05 3.06e-04 
U NA NA 14.59 7.80e-04 5.36e-04 

originally introduced to decrease the spectral radius of the 
spectral differentiation operator and thereby increase the 
allowable timestep in the solution of time dependent partial 
differential equations. This is not considered here. 

Although the major emphasis in this paper is on the 
approximation of rapidly varying functions we have found 
that the mapping (6) is also effective in approximating func- 
tions which vary more gradually. We illustrate this with the 
example 

y = 0.05/(x2 + O.OS), (12) 

which was also considered in [ 153. In this case we use 32 
collocation points. The results of the approximation are 
shown in Table VIII. 

We next illustrate the effectiveness of this mapping in 
approximating solutions of partial differential equations. 
We consider Burgers equation 

u,+uu.=vu,,, (13) 

where - 1~ x < 1. The initial condition and the boundary 
conditions are chosen as 

24(x, 0) = -sin 71x, u(+_l, t)=O. 

The viscosity coefficient v =0.01/n. This problem has been 
used as test case for a variety of spectral, pseudo-spectral 
and finite difference methods [2, 131. As t increases the 
solution develops a very steep gradient at x = 0. The 
maximum gradient at x = 0 occurs when rrt is close to 1.6. As 
t increases beyond this point the solution relaxes to zero. 
We have solved this problem using an adaptive pseudo- 
spectral method together with the mapping (6). The solu- 

TABLE IX 

Burgers Equation with N = 61 

??I nt a1 

151.9896 1.60407 21.5 
152.3214 1.60404 37.0 

581/101/2-9 

TABLE X 

Burgers Equation varying N 

m nt Xl N 

151.7508 1.61622 37.0 33 
152.3011 1.60446 37.0 49 
152.3214 1.60404 37.0 61 

tion is symmetric about x = 0 and the minimum of (3) 
always occurs at t12 = 0. 

The solution to this problem can be computed analyti- 
cally. One measure of accuracy, which has been used in 
[2, 131, is the quantity 

m = max(u,(O, t)). 

The analytic result is m = 1.5200516 occurring at nt = 
1.6037 [2]. We have found, analogously to what was found 
in [13], that the coordinate system which yields the most 
accurate calculation of m is not perfectly predicted by the 
adaptive procedure. Minimizing the functional (3) appears 
to concentrate too much resolution near x = 0 at the 
expense of resolution away from x = 0. A similar conclusion 
was arrived at in [ 131 using an adaptive procedure based 
on minimizing a different functional. When the search 
region is artificially constricted so that the parameter CI~ 
does not get too large, effectively reducing the resolution 
near x = 0, we find excellent agreement with the analytic 
value for m. We indicate the computed values of m in 
Table IX. The number of collocation points, iV, was 6 1. The 
first entry in the table is the result when the value of ~1, 
was restricted, while the second entry is for the value of CI, 
selected by the adaptive procedure. 

Using the mapping (6), a high degree of accuracy can be 
attained as the number of collocation points is reduced. We 
indicate this in Table X, where we list the values of m 
obtained for different numbers of collocation points. In this 
table we have not restricted the search for a, but rather 
taken the value of ~1~ predicted by minimizing (3). In most 
calculations the exact solution is not available and the mini- 
mization of some functional is at present the only practical 
method to predict the appropriate coordinate system. 

5. MULTIPLE DOMAINS 

The results presented above indicate that the mapping (6) 
can significantly improve the Chebyshev approximation to 
rapidly varying function when there is only one region of 
rapid variation or when there are several closely spaced 
regions of rapid variation. When there are widely spaced 
regions of rapid variation away from the boundaries the 
effectiveness of (6) degrades and the best strategy within the 
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context of a single domain computation is to use (7) with r 
near 1 so as to obtain a nearly uniform distribution of 
collocation points. However, the accuracy obtained from 
using (7) is generally less than the accuracy that could be 
obtained from use of the mapping (6) if the regions of rapid 
variation were not widely separated. 

One possible approach to this problem is to extend the 
mapping (6) to allow for the resolution of multiple regions 
of rapid variation. Such an extension would require addi- 
tional parameters in the mapping, and therefore the 
resulting minimization problem to determine appropriate 
parameters would be considerably more expensive than 
for the case when the mapping depends on only two 
parameters. 

An alternative approach is to introduce two or more sub- 
domains and employ mappings whithin each subdomain. 
The use of multiple domains can lead to an improvement 
in accuracy by (a) resolving small scale structures in 
the problem by introducing domains corresponding to the 
length scales appropriate to the problem, (b) choosing the 
interface so that the small scale structures or rapid varia- 
tions occur near the boundary, and (c) isolating different 
regions of rapid variations within each subdomain and then 
employing mappings such as (6) within each subdomain in 
order to improve the accuracy of the unmapped Chebyshev 
approximation. 

Multiple domain procedures have other advantages in 
addition to possible improvements in accuracy. For 
example, they lend themselves to parallel computation and 
can lead to smaller and better conditioned matrices, see 
for example 19, 14, 171. In this paper, however, we only 
consider the effect of multiple domains on the accuracy of 
approximation of rapidly varying functions. In particular 
we demonstrate that a strategy such as that described by 
point (c) above, involving the interaction of mappings and 
domain decomposition, can lead to significant improve- 
ments in the accuracy of Chebyshev interpolation. 

An alternative strategy is to employ multiple domains 
without any mappings. This strategy would be attractive if 
the effect of the mappings was to introduce an ill condi- 
tioning into the discretized differential operator. However, 
no such ill conditioning has yet been found. 

In the context of the solution of partial differential equa- 
tions, the use of multiple domains introduces additional 
parameters which have to be determined, in particular the 
number of domains, the location of the interface points, and 
the number of collocation points within each subdomain. If 
the multiple domains are chosen to correspond to very 
small scale structures or localized rapid variations, then the 
accuracy of the resulting approximation may be quite 
sensitive to the location and extent of the interface points. 
These parameters are generally chosen non-adaptively or 
with prior knowledge of the behavior of the function to be 
approximated. A general solution procedure for problems 

with rapid solutions would require adaptive procedures to 
determine both the number of the subdomains and their 
locations. 

When mappings are employed additional parameters 
must be determined. For example, if there are two domains 
and the mapping (6) is employed in each subdomain then 
there are seven parameters which have to be determined 
(the parameters of the mapping, the location of the interface 
and the number of collocation points within each sub- 
domain). In this paper we constrain the number of points so 
that each domain has an equal number of points. This 
strategy is preferable for parallel computation, although it 
may not necessarily be preferable for determining the most 
accurate approximation with a minimum number of com- 
putational degrees of freedom. We will also constrain the 
number of domains to be two. We now require the deter- 
mination of live parameters, including in particular some 
procedure to determine the location of the interface, e.g., 
some functional which measures the error as a function of 
the location of the interface. The determination of these 
parameters could be significantly simplified if the location of 
the interface could be determined independently of the map- 
ping parameters within each subdomain, i.e., a strategy 
whereby the location of the interface is determined from the 
current solution, and then new mapping parameters are 
determined within each subdomain by the minimization 
procedure described above. We demonstrate that a strategy 
of employing multiple domains to isolate regions of rapid 
variation, together with the mapping (6) to resolve 
localized regions of rapid variation within each subdomain 
can lead to such a decoupling of the problem of determining 
these parameters. 

In order to accomplish this it is first necessary to under- 
stand the role of the location of the interface on the accuracy 
of the approximation and to develop functionals which can 
monitor this. We therefore first consider the use of multiple 
domains without any mapping within each subdomain and 
then demonstrate that once an appropriate interface is 
found the errors in the approximation can be further 
reduced by employing mappings such as (6) within each 
subdomain. We consider the approximation of (11) with 
CJ = 50 and with 41 collocation points in each subdomain. 
We further restrict ourselves to the case where so = 0.5, 
?cl = -0.25, although similar results have been obtained for 
other values of these parameters. The accuracy of single 
domain Chebyshev approximations to this function under 
various mappings is described above. We now describe the 
effect on accuracy of breaking up the original domain into 
two subdomains. We compute the largest of the maximum 
norm errors within the two subdomains. 

The location of the interface, Q, will be obtained adap- 
tively by determining Q so that the maximum of (3) in each 
subdomain is minimized without using any mapping. Since 
we use an equal number of points in each subdomain, this 




